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Abstract Harvesting crop residue needs to be managed to
protect agroecosystem health and productivity. DAYCENT, a
process-based modeling tool, may be suited to accommodate
region-specific factors and provide regional predictions for a
broad array of agroecosystem impacts associated with corn
stover harvest. Grain yield, soil C, and N2O emission data
collected at Corn Stover Regional Partnership experimental
sites were used to test DAYCENT performance modeling the
impacts of corn stover removal. DAYCENT estimations of
stover yields were correlated and reasonably accurate (adjust-
ed r2=0.53, slope=1.18, p<<0.001, intercept=0.36, p=0.11).
Measured and simulated average grain yields across sites did
not differ as a function of residue removal, but the model

tended to underestimate average measured grain yields.
Modeled and measured soil organic carbon (SOC) change
for all sites were correlated (adjusted r2=0.54, p<<0.001),
but DAYCENT overestimated SOC loss with conventional
tillage. Simulated and measured SOC change did not vary
by residue removal rate. DAYCENT simulated annual N2O
flux more accurately at low rates (≤2-kg N2O-N ha−1 year−1)
but underestimated when emission rates were >3-kg N2O-
N ha−1 year−1. Overall, DAYCENT performed well at simu-
lating stover yields and low N2O emission rates, reasonably
well when simulating the effects of management practices on
average grain yields and SOC change, and poorly when
estimating high N2O emissions. These biases should be con-
sidered when DAYCENT is used as a decision support tool for
recommending sustainable corn stover removal practices to
advance bioenergy industry based on corn stover feedstock
material.
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Introduction

Corn (Zea mays L.) stover, the plant residue remaining after
harvest, is an attractive source of biomass for bioenergy in the
USA. The US Department of Energy Billion-Ton Study
Update (2011) considers agricultural residues such as corn
stover to be among the best sources of raw material to support
bioenergy industry, as they are already produced on a large
scale at low costs in regions with established crop production
infrastructure. Corn stover currently accounts for ∼70 % of all
crop residue production in the USA and is therefore of high
interest as a feedstock to support the expansion of industrially
scaled bioenergy production [1].
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The impetus to expand bioenergy production in the USA,
exemplified at the federal level with the Energy Information
and Security Act of 2007 and its revised Renewable Fuels
Standard (RFSII), includes replacing the use of fossil fuels to
strengthen US fuel security, reducing the climate change
impact of fossil fuel combustion, and concomitantly enhanc-
ing rural development [2]. However, the removal of crop
residues to expand bioenergy production must consider po-
tential impacts to the agroecosystem services provided by
agricultural by-products like corn stover. While corn stover
is widely available in the corn production regions in the USA,
care must be taken with residue removal in order to maintain
agroecosystem health and productivity [3, 4]. Crop residues
influence multiple agroecosystem functions which impact
crop productivity, including providing the building blocks
for soil organic matter that, in turn, contribute to water and
nutrient-holding capacity as well as nutrient availability [5–7].
Crop residues can reduce soil erosion, help maintain soil
fertility, and impact greenhouse gas emissions (GHGs), in-
cluding nitrous oxide (N2O) and methane (CH4) fluxes from
soil and changes in soil organic carbon (SOC) storage and net
carbon dioxide (CO2) emissions [8, 9]. Corn stover removal
can reduce or increase grain yields depending on other land
characteristics and management practices [5, 10].
Furthermore, replacing nutrients removed by stover removal
can increase fertilizer costs [11]. Sustainable agricultural man-
agement practices involving residue use must support a robust
bioenergy industry, meet climate impact reduction (e.g.,
RFSII) standards for renewable fuels, and maintain cropland
health to support growing crop production demands.

An economically viable and environmentally sustainable
bioenergy industry based on corn stover feedstock must in-
corporate both crop management practice recommendations
for corn stover production as well as accurate predictions of
production potential. Past studies evaluated impacts of corn
stover removal on subsequent grain yield [5, 7, 12, 13] and
used long-term sites to address other ecosystem effects such as
SOC changes [14–16]. A research goal of the Sun Grant
Initiative’s Corn Stover Regional Partnership team—which
is also supported by the USDA—Agricultural Research
Service’s Resilient Economic Agricultural Practices (ARS-
REAP) project—was to supplement these studies by estab-
lishing an extensive network of field trials across a range of
climatic and soil types to assess varying levels of residue
removal on soil C, water, nutrient content, and biomass char-
acteristics. More information on the Regional Partnership
studies is included within this and previous publications [4,
11, 17].

The Regional Partnership corn stover trials greatly expand
the amount of site-specific primary data on corn stover residue
production and the agroecosystem impacts of its removal.
Empirical data are needed to calibrate, validate, and refine
process-based models so they can be used to help establish

valid sustainable harvest rate guidelines (Johnson et al. (this
issue) and [9]). The need for such data was recognized by the
Regional Partnership corn stover team; therefore, the project
was designed to support predictive modeling, linking field
trial data to expanded regional projections [17].

A modeling tool suited to accommodate region-specific
factors and provide regional predictions for a broad array of
agroecosystem impacts is DAYCENT. The DAYCENT mod-
el, a process-based ecosystem model developed at Colorado
State University, simulates GHG fluxes as well as plant/soil C
dynamics and many other ecosystem processes [18, 19].
DAYCENTand its predecessor CENTURY have been applied
and tested in many agricultural systems both in the USA and
globally [20–22], including several types of bioenergy pro-
duction systems [23–25].While DAYCENTmodeling of corn
production has been widely tested for model applications such
as estimating agricultural land use emissions for the US
Environmental Protection Agency annual GHG inventory
report [26], evaluations of its performance simulating the
impacts of corn stover harvest are limited. One example is a
recent study by Gao et al., where DAYCENT was applied as
part of a Michigan-specific life cycle assessment (LCA) of
corn stover management [27].

There is a critical need for the application of process-based
models such as DAYCENT in designing scientifically sound
decision support tools for the development of bioenergy feed-
stock production [28]. Therefore, members of the Regional
Partnership team completed a review to identify economic and
sustainability metrics that impact the potential for corn stover
residue harvest in the Midwest [29]. Based on this review
[29], an integrated stover removal tool was designed that
linked several existing models (i.e., the Revised Universal
Soil Loss Equation Version 2 (RUSLE2), the Wind Erosion
Prediction System (WEPS), and the Soil Conditioning Index
(SCI)) to predict maximum residue removal rates that would
meet multiple sustainability criteria [30]. Recently, the
DAYCENT model was integrated into this framework to
provide dynamic estimates of biomass yields, SOC changes,
and GHG fluxes, thereby refining the evaluation and recom-
mendation of “sustainable” residue removal rates on regional
and site-specific levels. Evaluating DAYCENTsimulations of
corn stover residue removal effects against empirical data
from the Regional Partnership field sites contributes to the
development of the sustainability assessment tool that can
provide region-specific recommendations to support
agroecosystem services and the bioenergy industry.

Balancing agroecosystem services and developing a viable
large-scale bioenergy industry will require changing manage-
ment practices (e.g., growing cover crops and modifying
fertilizer form or rate) to increase or supplement C and nutri-
ents in the system. Cover crops and manure application [31,
32], increased synthetic N fertilizer application [33, 34], and
reduction in tillage intensity [6, 14] have been identified as
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amelioration approaches to develop “sustainable” practices
for corn residue harvest [29, 35] and subsequently are recur-
ring focal treatments in field studies assessing corn stover
management. In this study, we evaluated DAYCENT perfor-
mance in simulating SOC change, corn grain and stover
yields, and direct N2O emissions—a powerful greenhouse
gas [36]—from soils against the measured data from three of
the Regional Partnership corn stover sites and two long-term
published corn stover removal experiments [6, 10, 16, 37–41].
For the current study, simulated treatments were based on site-
specific variation in residue removal rates, tillage, N fertilizer,
and cover crops. We focus our analyses on the overall
DAYCENT performance in these systems, as well as on the
measured versus modeled impacts of residue removal rates
combined with variation in tillage treatments.

Materials and Methods

Experimental Data

To test the performance of the DAYCENT model, a series of
data were assembled from published literature evaluating two
sites in Rosemount, MN and Morris, MN for the soil and crop
production impacts of long-term corn stover removal, as well
as different levels of nitrogen (N) fertilizer application and
types of tillage [6, 16, 37, 38]. Data were also assembled from
three Corn Stover Regional Partnership sites in Ithaca, NE,
Brookings, SD, and a different site in Morris, MN established
as a subset of ARS-REAP to evaluate the sustainability of
corn stover harvest [17]. The Regional Partnership sites test
multiple levels of residue removal combined with dif-
ferences in tillage, N fertilizer application, and cover

crop management practices and are described in greater
detail in this issue as well as in prior publications [10,
40, 41]. Measurements at the Regional Partnership sites
included grain and stover yields, SOC change from 0 to
20 cm, and direct soil N2O emissions (Table 1). The
Regional Partnership data and published literature values
allowed us to test DAYCENT’s performance in simulating
biomass (i.e., grain and stover) production, SOC change, and
N2O emissions.

DAYCENT Model Overview

The DAYCENTmodel runs on a daily time step and simulates
various ecosystem processes to a soil depth of 20 cm. The
model includes routines for simulating the movement of soil
nutrients, the movement of water through soil layers, plant
growth, and many other ecosystem components that are de-
scribed in greater detail elsewhere [20]. The key drivers of
DAYCENT include maximum and minimum daily tempera-
ture, daily precipitation, soil texture, and land management
(including specific plant types grown and soil management
such as tillage and nutrient additions).

The DDcentEVI version of DAYCENT (a version of
DAYCENT with the option to use Enhanced Vegetation
Index— i.e., EVI—data) was used for this analysis.
DDcentEVI was developed and tested to estimate total agri-
cultural land use emissions for the US Environmental
Protection Agency’s (EPA) GHG emission inventory annual
report [26]. This repeated annual set of simulations involve
model parameterization for common agricultural crops, in-
cluding corn and soybean, as well as millions of model runs
and established protocols for estimating model uncertainty
[42–44], documented in detail in Annex 3.12 of the most

Table 1 Summary of study locations and treatments

Source Location Latitude/
Longitude

Management description Grain
yield

Stover
yield

Soil C N2O

[16, 37] Morris, MN 45.6/−95.9 29-year-continuous corn; moldboard
tillage; low fertilizer (83 kg N ha−1),
high fertilizer (166 kg N ha−1), and
control (0 kg N ha−1); 0 and 100 %
stover removal

X X X -

[6, 38] Rosemount, MN 44.7/−93.1 13-year-continuous corn; chisel, moldboard
and no till tillage; 0 and 200 kg N ha−1,
0 and 100 % stover removal

X X X -

Regional Partnership: Swan Lake
experimental site

Morris, MN 45.7/−95.8 7-year-corn/soy rotation; chisel and no till
tillage; 130 kg N ha−1; 0, 50, and 100 %
stover removed

X X X X

Regional Partnership: University of
Nebraska Agricultural Research
and Development Center[10, 39]

Ithaca, NE 41.2/−96.4 13-year-continuous corn; no till tillage; 60,
120, and 180 kg N ha−1; 0 and 100 %
stover removed

X X X X

Regional Partnership: North Central
Agricultural Research Laboratory
[40, 41]

Brookings, SD 44.3/−96.8 7-year-corn/soy rotation; no till tillage; average
135 kg N ha−1; 0,∼29, and ∼97 % residue
removal, with and without cover crop

X X X X
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recent inventory report [26]. Given the extensive parameteri-
zation process with DDcentEVI, we chose to use this version
in order to focus our efforts on validating model performance
using all data for corn stover residue removal experiments
available for this analysis.

An important component of any DAYCENT model simu-
lation is initializing the model based on the native ecosystem
type expected for the specific site and using the best available
information about land management after the native ecosys-
tem is converted for agricultural use. Given temperature and
precipitation as key drivers of biogeochemical processes, the
longest possible continuous daily climate datasets are needed
to run model initializations as well as drive simulations for the
experimental periods of interest. The climate data used to
drive model simulations for this study were derived using
the latitude and longitude of site locations to determine the
nearest North American Regional Reanalysis (NARR) grid
cell and the associated daily maximum and minimum temper-
atures and total precipitation from 1979 to 2009. The NARR
data, given at a 32-km scale, were generated as an extension of
the National Centers for Atmospheric Research Global
Reanalysis project and are freely available online (http://
www.emc.ncep.noaa.gov/mmb/rreanl/). The NARR data are
generated using algorithms to interpolate weather for areas
between weather stations. The NARR dataset is the standard
used for simulations in the US GHG inventory and therefore
was the source of climate data for all sites and years in this
analysis where site-specific data were not available. For the
three Regional Partnership sites, site-specific daily weather
data were available for the experimental time periods, and
these data were used instead of the NARR weather data in the
years available, extending the climate data time period at these
sites to 2010.

Soil texture information was gathered either from direct
field measurements reported by the Regional Partnership
sites or from soil texture data reported in publications for
the two non-Regional Partnership sites. Prior land use
history used for model initialization was drawn from (1)
county-level native vegetation assumptions used in simu-
lations for the EPA GHG emission annual report and (2)
information gained from literature and personal communi-
cation for agricultural management from when native veg-
etation was converted into cropland up to the treatment
period. Experimental management practices, such as plant-
ing and harvest dates, dates and quantities of fertilizer
application, and corn stover harvest rates, were drawn
from reported literature and the Regional Partnership field
data. These land use data were used to schedule events
within the DAYCENT model simulations. A total of 53
different corn stover management scenarios, matching ex-
perimental management practices across the five experi-
mental sites, were simulated to generate model results to
compare against measured data.

Statistical Analyses

Statistical analyses were completed using R-2.15.1 software
as well as the Hmisc and car packages [45–47]. Regression
analyses were applied to compare measured versus modeled
grain yield (megagram C per hectare), stover yield (megagram
C per hectare), SOC change over the measurement period
(megagram C per hectare), and annual N2O flux (kilogram
N2O–N per hectare per year) across all sites and all years. Two
treatment effects were also selected for measured versus
modeled estimate evaluation: (1) residue removal level and
(2) residue removal level+tillage. For measurements taken
across multiple years, averages by treatment were used to
compare measured versus modeled results across all sites.
For the evaluation of residue removal level alone, measured
versus modeled estimates of grain C and SOC change were
compared for three stover removal levels: full removal
(100 %), moderate removal (29–50 %), and no removal
(0%). Soil N2O emissions were evaluated using two treatment
levels: stover removal (>0 %) and no removal (0 %). For the
evaluation of residue removal level+tillage, measured versus
modeled estimates of grain C and SOC changewere compared
using four levels: conventional tillage+0 % removal, conven-
tional tillage+>0 % removal, no tillage+0 % removal, and no
tillage+>0 % removal. Measured versus modeled estimates
were assessed for normality using a Shapiro–Wilk test, as well
as assessed for equal variance. These measured versus
modeled estimates were then assessed across these treatment
effects using type III sums of squares two-way analyses of
variance (ANOVAs) to account for unequal sample sizes,
where the fixed effects tested were residue removal level and
tillage.

Results

Biomass

DAYCENT simulated annual grain yields with significant
correlation with measured yields but with high dispersion
and significant bias—there was a significant positive intercept
and a slope less than 1 (Fig. 1a). DAYCENTsimulated annual
stover harvest with a tighter significant correlation and less
bias, with a slope closer to 1 and an insignificant intercept
(Fig. 1b).

The measured and modeled average grain yields across the
sites did not differ between residue removal levels (Fig. 2a,
p>0.05). Across all treatment levels, measured values were
significantly higher than modeled estimates (Fig. 2a, p=
0.012). Measured and model estimates of average grain yields
did not show a significant overall effect of tillage+residue
removal levels, measured versus modeled estimates, or a
significant interaction between these factors (Fig. 2b, p>0.05).
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Soil C Change

The modeled and measured SOC change for all the sites
exhibited a significant correlation but a deviation from the
1:1 linear relationship, with a significant positive intercept and
slope less than 1 (Fig. 3a). Excluding sites that had ten or
fewer years between initial and final SOC measurements
(Fig. 3b), and thus greater uncertainty in the magnitude and
direction of change, gave a tighter correlation between mea-
sured and modeled estimates. However, removing short-term
sites did not change the model overestimation of SOC loss

rates for sites where measured SOC stocks were declining,
with a less significant positive intercept and a lower slope
(Fig. 3b).

For treatments where the time between initial and final
SOC measurements exceeded 10 years, SOC change did not
vary significantly by residue removal rate or by the interaction
between the residue removal rate and the measured versus
modeled estimates (Fig. 4a, p>0.05). However, measured
versus modeled estimates did differ significantly, with the
model consistently overestimating SOC change in the same
direction as the measured data (Fig. 4a, p<<0.001). For these

Fig. 1 Measured versus modeled grain yields (a) and corn stover harvest
(b) for all treatments and all years for which daily weather data was
available. The grain comparison (a) shows a significant relationship and
intercept (adjusted r2=0.13, slope=0.47, intercept=1.43, p<<0.001; root-

mean-square error (RMSE)=0.95). The stover comparison (b) shows a
significant relationship but insignificant intercept (adjusted r2=0.53,
slope=1.18, p<<0.001; intercept=0.36, p=0.11; RMSE=0.90)

n=15 n=13 n=19 n=7 n=8 n=12 n=20

a b

Fig. 2 Modeled versus measured grain yields by three levels of residue
removal rates (100 %=full, 100 %>moderate>0 %, and 0 %=none) (a),
as well as four levels of combined tillage (conventional versus no tillage)

and residue removal (0 %=none vs >0 %=rem) (b). Error bars show
standard error, with the number of replicates reported above each set of
measured versus modeled comparison
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same treatments, SOC did vary significantly by tillage+resi-
due removal level and measured versus modeled estimates
alone, as well as by the interaction between these factors
(Fig. 4b, p=0.003, p=0.003, and p=0.006, respectively).
Both the measured and modeled data suggest that convention-
al tillage leads to a loss of SOC, while no tillage leads to a gain
or little change in SOC that may depend on whether residue is
removed. However, the model shows a clear bias of
overestimating SOC loss with conventional tillage and with
or without residue removal.

N2O Emission

Modeled versus measured annual N2O emissions showed a
significant relationship and an intercept that did not differ
significantly from 0, but the slope>1 indicates a model bias
of underestimating annual N2O emissions. The increasing
divergence from the 1:1 line between modeled and measured
values with higher measured emission rates suggests better
DAYCENT performance in low-emission systems (<2-kg
N2O-N ha−1 year−1) but underestimation for sites and years

Fig. 3 Measured versus modeled SOC change from 0 to 20 cm for all
sites and all treatments (a) and for sites and treatments with greater than
10 years between initial and final SOC measurements (b). All sites (a)
show a significant relationship and intercept (adjusted r2=0.54, slope=

0.43, p<<0.001; intercept=1.97, p=0.002; RMSE=4.03). Sites with lon-
ger SOC measurements (b) show a significant relationship and slope, but
a weakly significant intercept (adjusted r2=0.67, slope=0.48, p<<0.001;
intercept=2.7, p=0.03; RMSE=3.89)

n=8

a b

n=3 n=12 n=7 n=6 n=5 n=5

Fig. 4 Modeled versus measured SOC change at sites with >10 years
between initial and final SOC measurements from 0 to 20 cm by three
levels of residue removal rates (100 %=full, 100 %>moderate>0 %, and

0%=none) (a), as well as four levels of combined tillage (conventional vs
no tillage) and residue removal (0 %=none vs >0 %=rem) (b), showing
standard error
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with high emission rates (i.e., >3-kg N2O-N ha−1 year−1)
(Fig. 5a). There were no significant differences in N2O as a
function of residue removal in either the measured or modeled
estimates (Fig. 5b, p>0.05 for all factors).

A qualitative comparison of measured versus modeled
estimates of daily N2O emission shows no obvious pattern
of divergence between the daily modeled andmeasured values
when N2O emissions are low (Figs. 6 and 7). However, there
is substantial divergence when N2O emissions are in peak
periods. DAYCENT sometimes simulated peak periods with
similar timing to measured peak periods but underestimated
their magnitude (Figs. 6b and 7c). DAYCENT simulation of
peaks sometimes did not match the timing of measured peaks
(Figs. 6d and 7b). DAYCENT also failed to simulate some
peak periods reflected in the measured data (Figs. 6b and
7a, b).

Discussion

Biomass

Modeled results suggest that DAYCENT can reasonably sim-
ulate corn stover yields across the management practices
considered in this study, a key concern for the expansion of
the bioenergy industry based on corn residue as a feedstock
material. However, the slope did exceed 1—the value that
would reflect perfect model simulation of measured values—
indicating some bias toward DAYCENT underestimating sto-
ver yields that should be considered in the use of the
DAYCENT model results within the context of a bioenergy
decision support tool.

DAYCENT performed more poorly in simulating annual
grain yields. The low coefficient of determination (r2)
reflected high dispersion, and the model tended to overesti-
mate grain yields in years where measured grain yields were
low and underestimate grain yields in years where measured
grain yields were high (Fig. 1a). DAYCENT simulates the
growth of aboveground biomass based on the interactions
between moisture and temperature and then simulates grain
harvest based on the harvest index specified by the user. Fine-
scaled timing-specific interactions between temperature,
moisture, and grain yields (e.g., high or low precipitation or
temperature events that impact flowering or grain filling) are
not yet included in DAYCENT and may cause its variable
performance simulating annual grain yields. When the data
were aggregated across years, DAYCENT did successfully
simulate the overall nonsignificant impact of corn stover
residue removal levels across these treatments; however, the
significant difference between modeled versus measured re-
sults indicates an overall model bias of underestimating grain
yields (Fig. 2a). This bias was not apparent in the comparison
between measured versus modeled grain yields across com-
bined tillage and residue removal levels; in this analysis, the
model successfully captured the overall insignificant impact
of residue removal levels and tillage on grain yields, with no
significant difference between measured and modeled results
(Fig. 2b).

These results suggest that DAYCENT can be used to
successfully model the relative impacts of residue removal
on grain yields but should be used carefully if simulating
quantities of grain yield on an annual basis. The DDcentEVI
version of DAYCENT has shown a tendency to overestimate
water stress effects on the grain production in the northern

Fig. 5 Measured versus modeled annual N2O flux for two sites (a)
showing measured standard error where reporting made these data avail-
able, a significant relationship, and an insignificant intercept (adjusted
r2=0.22, slope=1.67, p=0.019; intercept=0.078; RMSE=1.2). Bargraph

(b) shows measured versus modeled mean annual N2O flux by residue
removal level (none=0 % stover harvest (n=3), removal=>0 % stover
harvest (n=4)), with standard error
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Midwest region (Steve Williams, personal communication).
This region was the location of several sites used in this study
that showed substantial model underestimation of annual
grain yields relative to measured values (open circles,
Fig. 1a). This model bias should be addressed for evaluating
sustainability factors for corn stover residue harvest in the
northern Midwest region, with a better representation of water
stress effects on grain yields—particularly, better representa-
tion of the effects of precipitation timing, which can be critical
for grain production—to alleviate this bias in the modeled
results.

Soil C Change

The DAYCENT model had variable performance modeling
SOC change. DAYCENT simulations matched the direction
of SOC change for most sites (Fig. 3a), particularly sites with
greater periods of time between initial and final SOC mea-
surements used to calculate SOC change (Fig. 3b).
DAYCENT results, however, showed increasing divergence
from measured values showing SOC losses (Fig. 3). Soil C is
highly heterogeneous and variable, and often, longer periods
of time are required to effectively measure and observe SOC

changes due to changes in land management. The sites in this
study with shorter time sets had greater measured variation
than that reflected in the modeled estimates, which tended to
model treatments at these sites as just above or below 0 change
(Fig. 3a). It would be useful to repeat themeasurement of SOC
at these sites in the future to assess the accuracy of model
simulations over a longer time period. The sites might expe-
rience more SOC change following near-term management
changes than what the model is predicting, but the model
might account for some of this SOC change if it simulates
the effects of the practice (such as increased decomposition)
longer than the site experiences. Alternatively, the model may
be underestimating total changes occurring with the manage-
ment practices at these sites. The modeled versus measured
comparison of SOC changes over a longer time period (e.g.,
10 years or greater, as what were available for the other sites in
this analysis) would address this question, with either an

Fig. 6 Daily N2O flux measurements (hatched diamonds) compared with daily model simulations (line) of N2O flux for one representative site under
4 years of corn—soybean rotation, with no residue removal in soybean years (a, c) and partial residue removal during corn years (b, d)

Fig. 7 Daily measured (hatched diamonds) versus modeled (line) N2O
flux for a selection of sites and years where annual emissions calculated
from measured values exceeded simulated annual emissions by at least
1.5-kg N2O-N ha−1 year−1 (see Fig. 5a), showing examples of model
failure to simulate N2O peaks (a, b), failure to simulate the timing of N2O
peaks (b) and underestimation of N2O peak magnitude (c)

�
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increasing correlation between measured versus modeled re-
sults supporting the former behavior of underestimating near-
term changes or continued disconnection between modeled
and measured SOC change indicating poor model perfor-
mance in these locations. In the latter case, further model
assessment of SOC simulations would be required to identify
the cause for these site-specific discrepancies in modeled
simulations as compared with measured data.

Measured SOC changes by residue removal show no sig-
nificant SOC change with different levels of residue removal
but suggest greater SOC loss with full residue removal and the
potential for SOC gain with partial removal (Fig. 4a). This
supports a number of studies suggesting that SOC change can
be minimized by partial rather than full residue removal [10,
13, 48, 49]. In contrast, modeled results show the unexpected
behavior of the greatest SOC gain with moderate residue
removal and the potential for loss with both no and full residue
removal (Fig. 4a). However, these results could be due to the
interacting effects with the overestimated modeled SOC loss
with conventional tillage, which can be observed in Fig. 4b.

DAYCENT captures the measured trend of potential for
SOC loss with conventional tillage across residue removal
treatments versus some SOC gains with residue treatments
combined with no tillage (Fig. 4b). However, the model is
clearly overestimating the SOC losses in the conventional
tillage treatments (Fig. 4b). Simulated soil decomposition
processes in the DDcentEVI version of DAYCENT may be
too sensitive to tillage. The comparison of the modeled esti-
mates to the total aboveground and belowground biomass, as
well as an analysis of the modeled soil decomposition sensi-
tivity to tillage, would clarify the model processes causing this
overestimation of SOC loss. Despite oversensitivity to tillage,
our results support other modeled analyses that identified the
potential for no tillagemanagement practices to maintain SOC
with residue removal [50]. Specifically, our measured and
modeled SOC changes indicated a minimal or positive SOC
change when no tillage is combined with residue removal,
versus a more strongly negative SOC change when conven-
tional tillage is combined with residue removal (Fig. 4b).
Numerous studies have focused on combining management
practices such as increased N fertilizer and reduced tillage
with corn stover residue harvest, in order to maintain yields
and soil fertility [5, 14, 33, 34]. In the set of sites analyzed in
this study, we were only able to analyze tillage in addition to
residue removal for modeled versus measured analyses.While
N fertilizer levels were included in some of the experiments
considered in this analysis, aggregating data for cross-site
comparison between N fertilizer levels was not possible due
to differences in experimental designs. The importance of
combined tillage plus residue removal level in this analysis
suggests that other combinedmanagement practices such as N
fertilizer across residue removal levels should be the next
focal area of cross-region model validation and assessment,

Bioenerg. Res.



in order to better support the simulation of these management
practices within a bioenergy decision support tool framework.

N2O Emission

The DDcentEVI version of DAYCENT performed more ac-
curately modeling lower annual measured estimates of N2O
flux, as indicated by an insignificant intercept in the regression
analysis. However, the slope indicates increasing underesti-
mation of simulated annual flux as measured values increased,
which is particularly apparent for sites and years >3-kg N2O-
N ha−1 year−1 (Fig. 5a). Due to how data were reported, error
measurements were only available for some of the treatments
and were included to give some visualization of the variability
of measured annual N2O estimates (Fig. 5a). Including error
measurements on all the measured annual N2O emission
estimates would help clarify the comparison between modeled
and measured values. The model showed an overall bias of
underestimating annual N2O flux, when results were averaged
and compared across the residue removal levels (Fig. 5b).

N2O emissions are highly variable and transient, with high
flux occurring often in short time frames following certain
events, such as high precipitation, spring thaw, or N fertilizer
application. A comparison of daily measured versus modeled
N2O flux shows that the divergence between measured and
modeled annual flux may be due, in part, to DAYCENT’s
failure to capture the presence, timing, or magnitude of tran-
sient peak periods (Figs. 6 and 7). For example, in the repre-
sentative treatment shown in Fig. 6, the model seems to do
well in years when soybean is grown and N2O emissions are
consistently low (Fig. 6a, c), perhaps missing a small peak
around the harvest period. In comparison, when measured
values reflect larger and more frequent peaks during corn
growth years, the model performs more variably. In 2009
(Fig. 6b), the model simulations seem to match the timing
but not the magnitude of the highest N2O peak and then
missed a peak period at the end of the season, while in 2011
(Fig. 6d), the model simulations seemed to match the magni-
tude but not the timing of the highest N2O peak.

Despite the evidence for variable DAYCENT performance
simulating transient peak periods of N2O flux, it is challenging
to validate DAYCENT performance either cumulatively or on
a daily basis using the discontinuous and sometimes sparse
time series of N2O emission measurements made available in
this study. These types of N2O emission datasets are common,
asmore frequent measurements taken by hand or by automatic
chambers are resource intensive. Where continuous N2O
emission measurements are not possible, discontinuous sam-
ples taken at time points aimed to capture transient periods of
high flux as well as background flux across the season is a
common methodological approach. However, sampling fre-
quency has been recognized to affect cumulative estimates of
N2O emissions, with increasing divergence between true and

estimated N2O emissions as sampling intervals increase in
length [51].

In the comparison between DAYCENTmodeled estimated
and measured values, when N2O flux changes occur at a time
resolution finer than the measured data, the accuracy of
DAYCENT simulation between measured data points will
remain unclear. This can be observed in the results of this
study, with specific examples include the peaks and lows
simulated for N2O emissions between consecutive high mea-
sured data points in Figs. 6d (measured data on either side of
day 200), 7a (the first two measured data points), and 7b
(measured data points on either side of the highest simulated
peak). As another example, while the highest measured peak
in Fig. 6d is comparable to the modeled peak in magnitude, it
is unknownwhether the model is simulating the peak too early
or whether the measurement was taken as the flux was coming
down from a higher peak (Fig. 6).

There is an additional potential for sparse, discontinuous
N2Omeasurements to overestimate annual flux, depending on
the resolution and timing of the measured data and the method
of integration used to generate an annual estimate. For exam-
ple, measured time points might miss a peak or a period of low
emissions between peaks or might miss the timing with which
a transient peak returns to a baseline flux. The first two data
points in Fig. 7a demonstrate this potential; if the period of
low emissions simulated by DAYCENT did occur at that site,
but is not considered in the integration of the two measured
data points to estimate total flux for that period, their integra-
tion will result in an overestimation of N2O flux. It is possible
that DAYCENT’s underestimation of high N2O flux may be
due to how themeasurement data were integrated to determine
cumulative emissions. However, it should be noted that a
comparison of continuous versus discontinuous N2O emission
measurements demonstrated a pattern of underestimation of
cumulative emissions using discontinuous data, due to failure
to capture transient peaks in the time interval between mea-
surements [52]. In this latter case, DAYCENT simulations of
N2O emissions would diverge even further from measured
estimates in years with high flux. Without data at a higher
temporal resolution, it is not possible to determine either the
accuracy of the annual measured estimates or the extent to
which DAYCENT simulations diverge from true N2O
emissions.

Due to the transience and the magnitude of N2O flux
changes across the growing season, there would be great
benefits in comparing continuously measured N2O data
against DAYCENT model results, in order to inform the mag-
nitude and timing of peak flux events in model simulations as
well as more accurately compare annual flux to measured
values. For the purposes of using DAYCENT to evaluate the
N2O emissions of different production practices as a sustain-
ability metric, care should be taken not to underestimate the
N2O emissions in systems of potentially high flux.
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Conclusion

Overall, DAYCENT had variable performance simulating
the impacts of treatments for corn stover harvest included
in the five sites used in this analysis, with the greatest
accuracy simulating corn stover yields and consistency in
capturing management practice impacts on the relationship
and direction of change with SOC and corn grain bio-
mass. DAYCENT had variable performance simulating
N2O emissions, with more accurate performance where
annual emissions are low. Cumulatively, the model con-
curred with measured results suggesting little overall grain
yield impacts and suggested the potential for negative
SOC impacts with corn stover residue removal and con-
ventional tillage. The model has a tendency to underesti-
mate grain yields—particularly in some regions where the
model might be overestimating the impacts of water
stress—as well as overestimate SOC loss with convention-
al tillage and underestimate treatments with high N2O
emissions compared with modeled data. These behaviors
are important to consider when integrating DAYCENT
results into a larger sustainability estimate, where these
tendencies could respectively lead to underestimation of
corn grain production potential, overestimation of the neg-
ative soil C impacts of residue removal and tillage, and
underestimation of the emission of N2O.

Our residue removal and tillage results support the concept
of pairing changes in management for corn stover harvest with
treatments such as conversion to no till to maintain produc-
tivity and soil health. Modeled results suggested the potential
for interactive effects between residue removal and tillage. We
also suggest that other combined management practices such
as fertilizer application and cover crops be included in subse-
quent analyses of measured and modeled data comparisons, as
these are key practices being considered and recommended as
large-scale corn stover harvest for bioenergy moves forward.

This study reflects one of the original purposes of the
Regional Partnership corn stove project: integrating field data
with the predictive modeling of corn stover removal manage-
ment practices on a regional basis, in order to support the
recommendation of sustainable practices to advance a robust
bioenergy industry based on corn stover as a feedstock
material.
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